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Abstract 9 

We examine the utility of tree ring 
14

C archives for detecting long term changes in fossil CO2 10 

emissions from a point source. Trees assimilate carbon from the atmosphere during 11 

photosynthesis, in the process faithfully recording the average atmospheric 
14

C content in 12 

each new annual tree ring.  Using 
14

C as a proxy for fossil CO2, we examine interannual 13 

variability over six years of fossil CO2 observations between 2004-05 and 2011-12 from two 14 

trees growing near the Kapuni Natural Gas Plant in rural Taranaki, New Zealand. We quantify 15 

the amount of variability that can be attributed to transport and meteorology by simulating 16 

constant point source fossil CO2 emissions over the observation period with the atmospheric 17 

transport model WindTrax. We compare model simulation results to observations and 18 

calculate the amount of change in emissions that we can detect with new observations over 19 

annual or multi-year time periods given both measurement uncertainty of 1ppm and the 20 

modelled variation in transport. In particular, we ask, what is the minimum amount of change 21 

in emissions that we can detect using this method, given a reference period of six years? We 22 

find that changes of 42% or more could be detected in a new sample from one year at the 23 

same observation location, or 22% in the case of four years of new samples. This threshold 24 

lowers and the method becomes more practical the more the size of the signal increases. For 25 

point sources 10 times larger than the Kapuni plant (a more typical size for power plants 26 

worldwide), it would be possible to detect sustained emissions changes on the order of 10% 27 

given suitable meteorology and observations. 28 
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1 Introduction 1 

Carbon dioxide (CO2) emitted by anthropogenic activity is the largest single contributor to the 2 

radiative forcing causing climate change (IPCC, 2014). It thus plays a crucial role in any 3 

attempt to prevent or mitigate further warming. Large point sources (mainly from electricity 4 

generation and industry) contribute around a third of the total fossil-fuel derived CO2 (CO2ff) 5 

emissions (IPCC, 2014) and in many places are included in government regulatory schemes 6 

that aim to reduce emissions (e.g. European Union ETS, South Korea, Switzerland, and others 7 

at the city/state level; Serre et al., 2015).  Emissions are typically reported on an annual basis, 8 

and reduction targets are commonly agreed as annual or multi-year caps, often requiring 9 

changes in emissions relative to a baseline year (e.g. the Kyoto Protocol and the new Intended 10 

Nationally Determined Contributions (INDC), UNFCCC, 2015).  11 

Emissions are currently known from “bottom up” techniques such as self-reported data from 12 

fuel usage statistics (Boden et al., 2015) and/or continuous stack monitoring (U.S. 13 

Environmental Protection Agency, 2005; eGRID, 2014) and are subject to significant 14 

uncertainties (Ackerman and Sundquist, 2008; Gurney et al., 2009, 2012). This uncertainty 15 

might include not only methodological biases and possible deliberate underreporting but also 16 

simple error in compiling statistics. The integrity of regulation schemes and their 17 

effectiveness at limiting future climate change will require independent methods of evaluating 18 

reported emissions and improvement in the accuracy of emissions inventories (Tans and 19 

Wallace, 1999; Nisbet and Weiss, 2010; National Research Council, 2010; Gurney, 2013).   20 

“Top-down” atmospheric observations can provide an independent method for evaluating 21 

emissions. This involves taking observations of atmospheric gas mole fractions in 22 

combination with atmospheric transport modelling to infer the magnitude of emissions from a 23 

source or region over a particular time period (e.g. McKain et al., 2012; Lindenmaier et al., 24 

2014; Brioude et al., 2013). It can be quite challenging to quantify absolute values of 25 

emissions and CO2 fluxes in general because of the large errors and biases typically 26 

encountered in transport models (e.g. Stephens et al., 2007; Lin and Gerbig, 2005; Gerbig et 27 

al., 2008; Prather et al., 2008; Geels et al., 2007; Liu et al., 2011; Kretschmer et al., 2012). 28 

However, relative changes in emissions are usually easier to determine, since any consistent 29 

biases in the model will cancel out. By establishing a baseline measurement over a reference 30 

period, we can compare future observations to this reference and calculate relative changes 31 
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that occur. In this manner, we can potentially verify relative emission reduction targets 1 

without requiring precise knowledge of the absolute levels of emissions.   2 

One of the biggest challenges of atmospheric observations of CO2ff is distinguishing the 3 

fossil component from the considerable background level of CO2 that occurs naturally in the 4 

atmosphere, currently about 400 parts per million (ppm; Mauna Loa observation record, 5 

http://www.esrl.noaa.gov/gmd/ccgg/trends/index.html, last access: 13 May 2015). In addition, 6 

there are large diurnally and seasonally varying CO2 fluxes from the biosphere, which may 7 

result in changes in CO2 mole fraction of tens of ppm within a single day at near-surface sites 8 

(e.g. Miles et al., 2012). This problem can be avoided by using the 
14

C isotopic content as a 9 

tracer for CO2ff. CO2ff contains no 
14

C: the half-life of 
14

C is 5,730 years (Karlen et al., 10 

1968), and all of the 
14

C has decayed away from fossil fuels. Other sources of CO2 have 11 

roughly the same 
14

C content as the atmosphere. By measuring the 
14

C content of CO2 or a 12 

proxy for CO2, we can calculate the portion of observed CO2 that comes from recently added 13 

fossil fuel emissions (Levin et al., 2003; Meijer et al., 1996; Turnbull et al., 2006). 14 

Plant material can be used as a proxy for atmospheric CO2ff because plants assimilate carbon 15 

from the atmosphere during photosynthesis, in the process faithfully recording the 
14

C content 16 

in new plant material. The radiocarbon content in tree rings has been well established as a 17 

tracer for fossil CO2 emissions (Suess, 1955; Tans et al., 1979; Djuricin et al., 2012; 18 

Rakowski et al., 2013) and as a method to detect leaks from CO2 geosequestration (Donders 19 

et al., 2013). Tree rings represent an integrated average of daytime CO2 atmospheric mole 20 

fractions and 
14

C content over the tree’s annual growth period. This allows for a retroactive 21 

analysis of CO2ff mole fractions over many years, including any trends in emissions that 22 

occurred during the life of the tree.  23 

In this study, we evaluate whether we can detect changes in CO2ff emission rates from a point 24 

source on an annual time scale using the CO2ff mole fraction derived from the 
14

C content of 25 

tree ring archives. Variations in the observed CO2ff mole fraction at a given location are 26 

dependent on not only the emission rate but also on atmospheric transport, which in turn is 27 

subject to naturally varying meteorological conditions (e.g. wind speed and direction, 28 

temperature, pressure, etc.). Detecting a change in the emission rate requires disentangling 29 

this change from the natural variability in transport and meteorology as well as from 30 

measurement uncertainty in the observations. The question we ask in this paper is: can we use 31 

tree ring archives to detect changes in CO2ff emissions from a point source, and if so, what is 32 
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the minimum change in annual emissions that we can detect given the typical measurement 1 

uncertainty of 1ppm and natural variability in transport? A similar analysis was carried out by 2 

Levin and Rodenbeck (2007) at the regional scale, using a 20-year time series of 
14

C 3 

observations over Germany. McKain et al. (2012) also assessed the ability of an observation-4 

model framework to detect changes in regional urban CO2 emissions on a monthly time scale. 5 

We re-examine this question on the scale of an individual point source with mean annual 6 

observations.  7 

We calculate interannual variability in observations from tree ring archives of annual 8 

(growing season) CO2ff between 2004-05 and 2011-12
1
, taken from two different trees 9 

growing south of the Kapuni Natural Gas Treatment Plant in rural New Zealand (Norris, 10 

2015). We then use an atmospheric transport model, WindTrax, with local meteorological 11 

data to quantify the interannual variability that can be expected due to measurement 12 

uncertainty, transport and meteorology at different distances and orientations from the source, 13 

including the locations of the trees. Finally, we look at what this implies for detection limits in 14 

the context of emissions monitoring or verification and practical considerations in the 15 

presence of multiple sources of uncertainty. 16 

 17 

2 Methods 18 

2.1 Site 19 

The site of our study is the Kapuni Natural Gas Treatment Plant in rural Taranaki, New 20 

Zealand (39.477° S, 174.1725° E, 170 m.a.s.l.) (Fig. 1). This site was chosen because it is 21 

located in flat terrain and is relatively isolated from other sources of CO2ff, considerably 22 

simplifying measurement and analysis. The gas treatment plant, owned and operated by 23 

Vector, processes natural gas extracted from natural gas wells in the Taranaki Basin. The gas 24 

contains around 40% CO2, which is removed during processing and vented to the atmosphere 25 

at a rate of ~0.1 TgC yr
-1

 (NZMED, 2010). In addition, there is an ammonia urea 26 

manufacturing plant 500m to the west of the gas plant (Fig. 1), operated by Ballance Agri-27 

Nutrients, which also releases CO2ff to the atmosphere during the manufacturing process. 28 

This site emits roughly a third of the amount of the Vector gas plant (~0.03 TgC yr
-1

) 29 

                                                 

1
 Henceforth in this paper, the growing season spanning 1 September to 30 April will be referred to by the year 

in which the season began, i.e. 2004-05 will be designated 2004. 
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(Taranaki Regional Council, 2013). Although the signal from the Vector plant is much 1 

stronger, especially to the east (downwind from the dominant westerly winds), emissions 2 

from the Ballance plant are potentially large enough to detect at some locations and are 3 

included in our simulations unless otherwise specified. 4 

The surrounding terrain is flat and mostly free of obstructions, with elevation varying no more 5 

than 10m within 2km of the plant.  The largest nearby topographic feature is a dip of ~5m into 6 

the Kapuni stream immediately east of the Vector emission source. The landscape is 7 

dominated by highly productive pasture grazed by dairy cows, with large and diurnally 8 

varying CO2 fluxes. The prevailing wind direction is from the west, with a smaller proportion 9 

from the southeast and north (Figs. 2 and 3). 10 

2.2 CO2 emissions 11 

Emissions data were supplied by Vector as monthly totals (Peter Stephenson, personal 12 

communication), which we have converted to average daily rates for the purpose of 13 

modelling. Mean annual daily emissions for each year between 2004 and 2011 from 1 14 

September to 30 April are shown in Fig. 4; data are listed in Table S1. The long-term mean is 15 

5341 gC s
-1

, with a standard deviation in annual means of 388 (7.3%). There are annual 16 

fluctuations but no long-term trend over the modelled period 2004-2011. The largest change 17 

during a single year occurred in 2008, when the emissions dropped by 14% relative to the 18 

mean. On a longer time scale, there are more significant changes, including the start of 19 

operations at the Vector Plant in 1971. However, we focus on the 2004-2011 period during 20 

which high resolution local meteorological data is available. There are no significant seasonal 21 

or diurnal variations in the emissions of which we are aware.  22 

The Ballance Agri-Nutrients Plant emissions are reported on an annual basis (Taranaki 23 

Regional Council, 2013). Average daily rates in each growing season are depicted in Fig. 4. 24 

The mean daily rate of emissions over the period 2004-2011 is 1512 gC s
-1

 with a standard 25 

deviation in annual means of 88 (18%), which is more variable than the emissions from the 26 

Vector plant, but smaller in absolute terms. Emissions vary somewhat from day to day 27 

according to production levels, but more detailed daily or monthly information is unavailable; 28 

for simplicity we assume a constant emissions rate in each year. We note that emissions are 29 

much lower in 2011, which is due to downtime after both a fire and scheduled maintenance 30 

(Taranaki Regional Council, 2013). 31 
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2.3 Tree ring observations 1 

Tree rings faithfully record the 
14

C content of assimilated CO2, so when the rings are 2 

independently dated by dendrochronology, we can determine an average 
14

C content and 3 

recently added CO2ff in the local atmosphere for the period during which the tree ring was 4 

laid down.  We use core samples from two trees located south of the plant, a pine tree (Pinus 5 

radiata) and a chestnut tree (Castanea sativa) (Fig. 1; Norris, 2015). The pine tree is located 6 

in a stand of trees within 5m of the Kapuni stream, with the crown reaching 10m above the 7 

associated terrain dip.  The chestnut is isolated in a flat paddock.   8 

Each tree ring is assumed to represent the Southern Hemisphere summer growth period from 9 

1 September to 30 April, as this is when the majority of plant photosynthesis occurs and new 10 

plant material is produced. The sample preparation, measurement and determination of CO2ff 11 

are described in detail by Norris (2015).  In summary, alpha cellulose was extracted from 12 

individual rings, combusted, reduced to graphite and measured by accelerator mass 13 

spectrometry.  CO2ff was determined following Turnbull et al. (2014) from the isotopic 14 

difference between the measured tree ring and clean air background CO2 measured at Baring 15 

Head, Wellington (41.4167°S, 174.8667°E; Currie et al., 2011; extended dataset to 2015 will 16 

be presented in an upcoming publication). Baring Head, located at the southern end of New 17 

Zealand’s North Island and approximately 220 km southeast of Kapuni, was chosen as the 18 

background for this study over more local sites because it provides a long-term record of 19 

background CO2 and 
14

C, dating back to the early 1970s. Background levels in tree rings 20 

measured at a site in Kapuni 2km upwind of the Vector plant are close to those measured at 21 

Baring Head in the same time period, justifying the use of the Baring Head dataset (Norris, 22 

2015). Uncertainty in CO2ff is dominated by ∆
14

C measurement uncertainty in both 23 

background and the observed sample and is typically ~1ppm for this dataset.  24 

The process of CO2 adsorption in plants is extremely complex. For simplicity, we assume a 25 

constant assimilation rate over all daylight hours. In reality, CO2 adsorption varies with plant 26 

species and photosynthesis rates, being weighted towards sunny periods and midday 27 

(Bozhinova et al., 2013). There are also many different climatic and nutrient limitations that 28 

can only be properly accounted for with a full process-based biogeochemical model of plant 29 

growth, which is beyond the scope of this study. We do, however, take into consideration the 30 

fact that plant material will tend to underestimate mean CO2ff when CO2ff is variable, as in 31 

the case of a plume from a point source (see Sect. 2.7). 32 
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2.4 WindTrax model 1 

WindTrax (WindTrax 2.0; Thunder Beach Scientific, Nanaimo, Canada, 2 

www.thunderbeachscientific.com) is a Lagrangian particle dispersion model used to estimate 3 

unknown trace gas concentrations or emission rates from a source over short distances 4 

(~1km). WindTrax has been applied to agricultural emissions from area sources, such as 5 

methane, ammonia, and other gasses from grazing dairy cows, cattle feedlots and farm waste 6 

(e.g. Flesch et al., 2005; Laubach and Kelliher, 2005; Bonifacio et al., 2013; Rhoades et al., 7 

2010; Wilson et al., 2012; McBain and Desjardins, 2005). It has also been assessed in the 8 

context of CO2 sequestration leakage detection (Leuning et al., 2008; Loh et al., 2009). 9 

Modelling integrated averages of CO2ff in plant material is a relatively new application. 10 

WindTrax was chosen for this study because it is easy to use and the distance scale is 11 

appropriate for our site. We previously used WindTrax to estimate CO2ff in grass samples at 12 

the Kapuni site (Turnbull et al., 2014), demonstrating that the model is capable of providing 13 

reasonable estimates of observed CO2ff. Here, we take the same approach to model CO2ff 14 

measured in tree rings. We note that WindTrax is not applicable to complex terrain or larger 15 

distance scales and caution is urged when applying our methodology to other sites.  16 

WindTrax simulates the transport of trace gases by releasing a set number of particles at each 17 

time step and following each particle’s trajectory downwind. Based on Monin–Obukhov 18 

similarity theory, the physics underlying the model is described in detail in Flesch et al. 19 

(2004) and Wilson and Sawford (1996). The model equations are valid in the atmospheric 20 

surface layer. It assumes wind and other meteorological observations are averaged over a 21 

suitable time interval representing a stable, mean atmospheric state (10-30 minute intervals 22 

are recommended). Intervals longer than one hour have been shown to be problematic (Flesch 23 

et al., 2004) because at these time intervals, large-scale fluctuations not built in to the model 24 

become important. In this study, we use one hour time steps to match the resolution of our 25 

meteorological dataset (see Sect. 2.5). 26 

The model can be run in forward (fLS) or inverse/backward (bLS) mode, depending on 27 

whether the emissions or the trace gas mole fractions are unknown. In all simulations 28 

described here we start with known emission rates and use the fLS mode to estimate the 29 

CO2ff mole fraction at locations surrounding the plant. Model “concentration sensors” 30 

represent simulated measurements of mole fractions at designated locations and supply the 31 

main model output. 32 
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The model is stochastic, meaning that it introduces random turbulence into particle 1 

trajectories, and no two runs are identical, even with the same parameters and meteorological 2 

input. There is, therefore, inherent error in the model predictions due to the randomness 3 

introduced in the transport process. Only the average behaviour of a group of particles can be 4 

determined, and releasing more particles at each time step will tend to reduce the degree of 5 

uncertainty. Statistical error (or the standard deviation within each set of trajectories) is 6 

calculated and output by the model at each time step. However, any biases in the modelled 7 

transport or the meteorological input data used to drive the model are not accounted for. 8 

2.5 Meteorology 9 

Modelling with WindTrax requires at a minimum wind speed, wind direction, air temperature, 10 

and atmospheric pressure at each time step. We use hourly meteorological data from the 11 

Hawera Automatic Weather Station (AWS) (39.6117°S, 174.2917°E, 98 m.a.s.l), downloaded 12 

from the New Zealand National Climate Database (CliFlo, 2014). Hawera, approximately 13 

20km distance to the southwest of Kapuni, is the nearest location with a nearly complete long-14 

term dataset of hourly wind direction and speed. Eight years of data (2004-2011) were 15 

available at the time of our study. We use only data from the growing season (1 September – 16 

30 April) and daylight hours (08:00 – 18:00 local daylight savings time) in the model 17 

simulations to correspond to the time period during which trees assimilate CO2.  18 

The area to the northwest of Hawera and Kapuni is dominated by Mount Taranaki, a 2518m 19 

volcanic cone that rises steeply from relatively flat surrounding terrain. Wind direction and 20 

speed can be very different at sites only a few kilometres apart because of the local impact of 21 

the mountain on atmospheric flow. Thus we compared Hawera and Kapuni meteorological 22 

datasets to ensure that Hawera is representative of Kapuni over long (~1 year) time periods 23 

and the wind speed and direction distributions as a whole are similar at both locations. A wind 24 

rose for the eight years (2004-2011) of data at Hawera is shown in Fig. 2, together with a 25 

wind rose for one year (2013) of data at Kapuni. Wind speeds are on average higher at 26 

Hawera, but the distribution in direction is very similar, with a small overrepresentation of 27 

northerlies at Hawera. The wind speed and direction distributions at both locations are shown 28 

in more detail in Fig. S1.  29 

We demonstrate correlation between the two sites using the only overlapping dataset that was 30 

available for direct comparison at the time of the study. We collected data at a temporary 31 
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meteorological station at Kapuni at 10-minute intervals during the period 14 August – 26 1 

October 2012, with some significant data gaps (Turnbull et al., 2014). These were averaged to 2 

hourly intervals and compared with the corresponding set of measurements at the Hawera 3 

AWS. Only daylight hours were included for consistency with the model simulations. Using 4 

these datasets, correlation in wind speed is good, with R
2
 = 0.82, and correlation in wind 5 

direction is moderate (R
2
 = 0.61). Because wind direction is an angular measurement, 6 

correlation in wind direction was performed using the circular package v0.4-7 in R v3.0.2 7 

(Lund and Agostinelli, 2013; R Core Team, 2013) rather than the standard linear correlation 8 

function. Scatter plots comparing wind at Kapuni and Hawera directly at each time step are in 9 

Fig. S2. Wind speed is a good match, with Hawera on average having slightly higher speeds 10 

than Kapuni.  With wind direction, most points are close to the 1:1 line or slightly below, 11 

indicating a small rotation in direction between the sites. Approximately 67% of data points 12 

(one sigma) are within 30° of each other, and 85% are within 45°. For the purpose of our 13 

simulation in which we focus on integrated averages rather than particular points in time, the 14 

Hawera dataset is sufficiently representative of typical conditions at Kapuni. 15 

We expect variability in CO2ff mole fraction to be strongly related to variability in wind 16 

speed and direction, and consequently sampling location. Annual mean wind speed does not 17 

vary by much; the mean wind speed over all eight years is 6.3 m s
-1

, and the standard 18 

deviation in annual mean is 0.11 m s
-1

, which is only 2% of the mean. Mean wind direction is 19 

273° (from the west), but there is also a significant amount of wind from the southeast and 20 

north-northeast (Figs. 2 and 3). This general pattern did not change from year to year over the 21 

eight years of the simulation, but relative proportions in each direction did sometimes vary 22 

considerably (Fig. 3). In particular, northerlies (the direction most relevant to our 23 

observations) range from 21-28% of the total, a 30% change in the northerly fraction. While 24 

always the largest category, the percentage of westerlies varies between 38-52%. It is notable 25 

that there are very few periods with calm winds; the region is in general very windy. 26 

2.6 Model parameters 27 

Several model parameters are held constant throughout all simulations. The modelled surface 28 

is short grass (surface roughness zo = 2.3cm), since the majority of the surrounding area is 29 

grazed dairy pasture. The heights of the two emissions stacks are set to their known values: 30 

35m above ground level for Vector and 36m for Ballance. The model’s atmospheric stability 31 

parameter is also held constant using the general class of ‘moderately unstable’. While this is 32 
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not true for all modelled time periods, in the absence of measurements from a 3D sonic 1 

anemometer or other reliable indicators of atmospheric stability, a general stability class is a 2 

first approximation. We tested the model at a different constant stability class (‘slightly 3 

unstable’) and found no significant difference in the amount of variability (results not shown). 4 

We note, however, that atmospheric stability is a potential source of error; others have found 5 

that stability is an important parameter that can bias results, and model estimates are generally 6 

improved with input from a sonic anemometer or vertical profiles of wind speed and 7 

temperature (Flesch et al., 2004; Gao et al., 2009; Koehn et al., 2013). 8 

Model concentration sensors at the locations of the pine and chestnut trees are placed at 9 

heights of 15.0m and 5.0m, respectively, reflecting the approximate height of the canopy. A 10 

single height at each tree was chosen to reduce model complexity and runtime; however, we 11 

recognize that in reality CO2 is assimilated over a range of heights at each tree, corresponding 12 

to the vertical spread of the canopy. Some previous studies have indicated that concentrations 13 

modelled with WindTrax are sensitive to sampling height and/or the ratio of sampling height 14 

to distance from the source (e.g. McBain and Desjardins, 2005; Laubach and Kelliher, 2005; 15 

Laubach, 2010). To test for dependence on height, we simulated CO2ff along a 20m vertical 16 

profile at the location of the pine and chestnut trees (results not shown). Results vary 17 

somewhat according to height, and averaging over a 5m height range slightly reduces the 18 

mean and interannual standard deviation, but not enough to change our results significantly.  19 

2.7 Simulations 20 

We ran a “constant emissions, variable meteorology” simulation at an hourly time step with 21 

all eight years of available meteorological data from Hawera (excluding night time and winter 22 

months), concentration sensors placed at the locations of the trees, and both the Vector and 23 

Ballance plants as CO2ff point sources (Fig. 1). Because emissions are held constant, this 24 

simulation enables us to isolate contributions to variability from meteorology and transport. 25 

For each tree, four concentration sensors were placed on the vertices of a square, with sides of 26 

length 30m, centred on the location of the trees and averaged to reduce model transport error. 27 

The emission rate at each source was the reported mean rate over the entire modelled period.  28 

In addition to the model sensors at the locations of the trees, we placed sensors at hypothetical 29 

locations in four directions and two horizontal distances from the emissions source to 30 

examine more general model sensitivity and variability due to meteorological conditions at 31 
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our site without being tied to the locations of specific observations. Eight additional sensors 1 

were placed 1.5m above the ground in the four cardinal directions relative to the Vector plant, 2 

one each at 300m and 600m horizontal distance from the source. Only one point source, the 3 

Vector plant, was included in the results at these sensors to simplify analysis. Emissions are 4 

constant at the Vector mean rate over the eight years.   5 

We also ran a “constant meteorology, variable emissions” simulation in which we repeat the 6 

meteorology from one year (2004) and allow emissions rates to vary according to the reported 7 

values. This allows us to examine model annual variability due to emissions, independent of 8 

transport. 9 

We subsequently generated a “variable emissions, variable meteorology” simulation by 10 

scaling modelled mole fractions at the tree rings from the constant emissions, variable 11 

meteorology simulation according to reported emissions levels in each year (Fig. 4). This is 12 

valid because the relationship between source strength and concentration flux passing through 13 

a location downwind is linear (Leuning et al., 2008). In addition, under unstable atmospheric 14 

conditions the emissions leave the model domain within one hour and do not return, so data in 15 

a given year is not affected by the emissions from previous years. This simulation is used to 16 

compare the model to observations. 17 

Because plant material will underestimate mean CO2ff when CO2ff is variable, rather than 18 

comparing the tree ring measurements to the raw model output of CO2 mole fractions, we 19 

calculate a modelled “CO2fftree”. This is the CO2ff that the model would predict from the plant 20 

material given measured background levels and the equations governing ∆
14

C. We use the 21 

following equations: 22 

 

iffbg

iffffbgbg

i
CC

CC

+

∆+∆
=∆                                                                                                             (1) 23 

∑
=

∆=∆

N

i

itree
N 1

1
                                                                                                                         (2) 24 

treeff

bgtreebg

treeff

C
C

∆−∆

∆−∆
=

)(
                                                                                                          (3) 25 

where ∆ = ∆
14

C, Cff i is the modelled CO2ff at the i
th

 time step, N is the total number of model 26 

time time steps, Cbg and ∆bg are measured (Norris, 2015), and ∆ff = -1000. The basic 27 

derivation of this equation can be found in Turnbull et al. (2006). This accounts for the fact 28 

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2015-919, 2016
Manuscript under review for journal Atmos. Chem. Phys.
Published: 19 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



 12

that plant material will assimilate roughly the same amount of CO2 at each time step 1 

regardless of the variability in atmospheric CO2 mole fraction induced by the emission plume, 2 

and thus the ∆
14

C of the plant material represents a simple mean of the ∆
14

C in the assimilated 3 

CO2 at each time step.  In contrast, sampling of whole air across the same time period would 4 

collect more CO2 during times of high CO2 mole fraction, weighting the resultant ∆
14

C 5 

towards these periods.  This results in a CO2fftree that is lower than would be obtained by 6 

determining the simple mean CO2ff from the modelled mole fractions. Model results from the 7 

variable emissions simulation reported in Fig. 4 and Sect. 3 were derived using these 8 

equations. 9 

 10 

3 Results and Discussion 11 

3.1 Observation and model comparison 12 

We first compare modelled CO2fftree to the observed tree ring CO2ff to evaluate the model’s 13 

ability to estimate annual integrated averages in this context and to identify possible biases 14 

and error in the model. Our observations from tree rings consist of six annual measurements 15 

of CO2ff from both the pine tree and the chestnut tree between 2004 and 2011 (2008 and 2010 16 

are missing) (Fig. 4). The means over this period are 5.4ppm (pine) and 2.1ppm (chestnut) 17 

(Table 1). Mean modelled CO2fftree over the same six years (excluding the two years without 18 

observations, 2008 and 2010) is 6.1ppm and 2.2ppm for the pine and chestnut tree, 19 

respectively. The modelled mean is almost an exact match for the chestnut tree (difference of 20 

0.1ppm) and within error for the pine tree (difference of 0.7ppm). Figure 4 shows a direct 21 

comparison between measured and modelled CO2ff for each year. At the pine tree, model 22 

performance is very good: four of the six (66%) annual observed values are within one sigma 23 

of the modelled values, and the remaining two are within two sigma. The agreement for 24 

individual years at the chestnut tree is poorer, but with large errors in the observations and the 25 

distance from the source close to the limit of model capabilities, this is expected.  26 

The model is able to simulate both the long-term mean and the annual variation in CO2fftree 27 

with a reasonable degree of accuracy, and there are no significant biases apparent. Thus we 28 

can be confident that the model is representative of relative interannual variability in 29 

transport, which is the focus for the remainder of this paper. 30 
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3.2 Drivers of interannual variability in CO2ff 1 

Detecting changes in emissions requires disentangling the changes in CO2ff due to emissions 2 

from other sources of interannual variability. We now examine the variability in our 3 

observations and turn to our model simulations to determine the relative contributions from 4 

emissions, transport, and measurement uncertainty. 5 

The observed standard deviations of the six annual CO2ff values from the tree rings are 6 

0.8ppm (14% of the six-year mean) and 1.1ppm (51%) for the pine and chestnut tree, 7 

respectively (Table 1). This includes not only variability in emissions but other sources of 8 

uncertainty such as meteorology and transport, variable 
14

C assimilation rates in the trees, 9 

precision of measurements, and background corrections. Measurement uncertainty in 10 

particular is important at these relatively small concentrations. Given that the standard 11 

deviations are very close to the typical measurement uncertainty of ~1ppm, the scatter in 12 

annual means can be attributed in large part to this factor alone. For example, at the pine tree, 13 

we would expect at least four out of six measurements to be within 1ppm (one sigma) of the 14 

long-term mean, all other factors being constant. This is indeed true of four of the six 15 

observations. Measurement uncertainty is proportionally much higher in the case of the 16 

chestnut tree, which is ~1km from the Vector plant and where the average signal is only 17 

~2ppm. At this distance measurement uncertainty would seemingly dominate other sources of 18 

variability. In contrast, the pine tree is much closer to the source (~400m), and the signal is 19 

two to three times larger. Variations in emissions will make up a larger proportion of the total 20 

variation and are more likely to be detectable at current measurement precision.  21 

The standard deviations of modelled CO2fftree in the variable emissions, variable meteorology 22 

simulation are 0.5ppm (7.8%) and 0.3ppm (15%) at the pine and chestnut tree, respectively 23 

(Table 1). Adding measurement uncertainty of 1ppm in quadrature, we would predict the 24 

standard deviations of the annual means in observed CO2ff to be 1.1ppm (18%) and 1.0ppm 25 

(47%) for the pine and chestnut, respectively, if variability in emissions, atmospheric 26 

transport and measurement uncertainty explain all of the interannual variability. In 27 

comparison, the observed standard deviations of the annual means are 14% of the long-term 28 

mean at the pine tree and 51% at the chestnut tree. Thus emissions, transport, and 29 

measurement uncertainty are able to explain the interannual variability in the observations 30 

within error.  31 
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We can estimate the relative proportion of interannual variability that is due to atmospheric 1 

transport using the constant emissions model simulation, in which the only source of 2 

variability is meteorology. The modelled mean CO2ff over the six years with observations is 3 

7.4ppm and 2.7ppm for the pine and chestnut, respectively, and modelled standard deviations 4 

are both 0.5ppm (6.6% and 19% of the respective means) (Table 1). Over the full eight years 5 

of the model simulation, the means and standard deviations are 7.7 / 0.9 ppm (12%) and 2.7 / 6 

0.5 ppm (19%), respectively.  7 

Examining more general patterns of meteorological and transport variability at the Kapuni site 8 

apart from the locations of the trees reveals that the variation is highly dependent on the 9 

direction of the observation location relative to the source. The results at the eight 10 

hypothetical sensors averaged in each individual year and means for the entire eight years of 11 

simulation are compared in Fig. 5, and the long-term means and standard deviations are given 12 

in Table 2. The variation to the south of the plant (10-11% of the mean) is the lowest of any 13 

direction and consistent with the variation found at the pine tree in the constant emissions 14 

simulation over the full eight years (12%). Absolute CO2ff mole fractions are highest in the 15 

east (westerlies being dominant), but standard deviations are slightly higher at 14% of the 16 

mean. Concentrations in the west are low (~2ppm) and highly variable, the result of the low 17 

percentage of easterlies in any given year (Fig. 3). Variation is relatively insensitive to the 18 

distance from the source. 19 

It is apparent that wind direction drives a large part of the variation in transport. Annual 20 

modelled CO2ff at the trees in the constant emissions simulation is correlated with the annual 21 

percentage of wind in the direction +/- 30° of the direct line between the source and the tree, 22 

corresponding to the plume trajectories that are most likely to pass through the tree locations 23 

(Fig. S3; R
2
 = 0.56 and 0.72 for the pine and chestnut tree, respectively). The same correlation 24 

between wind direction and modelled CO2ff at all eight hypothetical sensors combined gives 25 

an R
2
 of 0.58. Over half of the transport variability is thus explained solely by variation in the 26 

percentage of wind in each direction. However, other meteorological variables and model 27 

parameters (e.g. wind speed, temperature, pressure, etc.) still play a non-negligible role, as the 28 

annual variation in wind direction is not equivalent to the interannual variability in modelled 29 

CO2ff. 30 

In the same manner, we can determine the contribution of changes in emission rates to the 31 

overall interannual variability with the constant meteorology simulation in which emissions 32 
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vary but transport is the same in each year. This results in interannual variability in CO2ff 1 

similar to the variability in the emissions themselves, with the magnitude roughly scaled to 2 

the distance from the emission source: the standard deviations are 0.5ppm (7.4%) and 0.2ppm 3 

(7.6%) for the pine and chestnut tree, respectively. In comparison, the standard deviation of 4 

the average daily emissions rate over the six years with observations is 7.9% of the mean for 5 

the Vector plant and 21% for the Ballance plant, with a standard deviation of 8.1% for the 6 

combined total (over the full eight years between 2004 and 2011, the standard deviations are 7 

7.3% and 18% of the 8-year mean for Vector and Ballance emissions, respectively, and the 8 

variation in the combined emissions is 7.7%). This is on the same order of magnitude of the 9 

variability due to transport at the pine tree but only about half the amount at the chestnut tree. 10 

Looking at all of the factors together (Table 1), variations in emissions and transport 11 

contribute about equally to total variation at the pine tree. At the chestnut tree, transport 12 

makes up a larger proportion of the total, which likely reflects the greater variability in 13 

meteorology in that particular direction. The variability in emissions somewhat counter-14 

balances the variability in transport, particularly at the chestnut tree, where the standard 15 

deviation with both variable emissions and meteorology (0.3ppm / 15%) is lower than that 16 

with constant emissions (0.5ppm / 19%). This is most likely coincidental to the particular 17 

years of observations, as there is no correlation between variations in emissions and variations 18 

in transport (not shown).  Meteorological variation happens to be lowest in the south, where 19 

the trees are located, even though the largest signal occurs to the east (Table 2 and Fig. 5). In 20 

this respect, the trees are fortuitously located for our study. This underscores the benefit of 21 

analysing transport variability at a particular location before collecting observations, as the 22 

quality of results can be greatly influenced by meteorological patterns. 23 

3.3 Detection limits 24 

Given the amount of interannual variation in meteorology and transport that we can infer from 25 

the model and typical measurement uncertainty of 1ppm, what is the minimum change in 26 

emissions that it is possible to detect in a tree ring sample taken at Kapuni, representing an 27 

integrated average of CO2ff over a year or more? We use a student t-test to quantify the 28 

minimum amount of change in observations required (relative to the long-term average or 29 

reference period) that would allow us to conclude that there has been a change in emissions. 30 

The t-test calculates the minimum difference between the long-term mean and a new annual 31 

tree ring sample (or samples) that would be statistically significant above scatter or noise from 32 
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other factors. We make the assumption that our observations and simulated mole fractions are 1 

normally distributed. The results of the 2-sided test (representing change in either direction) at 2 

a 95% confidence level are given in Table 3 for “future” samples representing one, two and 3 

four years of integrated average CO2ff. All percentages are relative to the long-term mean 4 

over six years, our reference period for this study. We assume that the standard deviation in 5 

future samples due to interannual variability in meteorology is the same as the standard 6 

deviation over the reference period.  7 

Using the modelled means and standard deviations from the constant emissions simulation of 8 

tree ring CO2ff and measurement uncertainty of 1.0ppm, the detection limits represent the 9 

minimum observed change that would indicate a driver of variability other than transport or 10 

measurement uncertainty, in this case CO2ff emissions. With a new observation representing 11 

one year (i.e. one tree ring), the difference between the long-term mean and the new sample 12 

would need to be more than 42% at the pine tree and 115% at the chestnut tree to have high 13 

confidence that the sample shows a change in emissions, rather than just natural variability or 14 

uncertainty. If we have four new annual observations at the new emission rate, the difference 15 

reduces by half to 22% and 62%, respectively. These detection thresholds are well above the 16 

reported annual changes in emission rates between 2004 and 2011 (Fig. 4). At the distance 17 

and location of the chestnut tree (~1km), it seems likely that the signal is too small and 18 

variable to be practical for detecting emission changes for a point source with emissions of 19 

this magnitude. 20 

If we relax the condition to one sigma (or a 68% confidence level), would we be able to detect 21 

the largest change in emissions reported at the Vector Plant between 2004 and 2011? The 22 

student t-test at 68% confidence level gives corresponding detection limits listed in Table 3. 23 

For a one-year observation from the pine tree, this is 18%. The largest change in emissions in 24 

any single year at the Vector plant is in 2007, with a decline of 14% relative to the long-term 25 

mean, still below the detection limit. Indeed, looking at the results in Fig. 4, there is no 26 

significant decline at the chestnut tree in 2007; there is a small decline in CO2ff at the pine 27 

tree but it is too small to conclude that emissions have changed. If we were able to achieve a 28 

reduction in measurement uncertainty to 0.5ppm, however, the threshold for detection at the 29 

pine tree becomes an 11% change in emissions, and we would expect to be able to observe a 30 

14% decline in emissions. In this case, the small decline in CO2ff at the pine tree in 2007 31 

would be significant. 32 
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Would we be able to detect this change at a different location (in direction and/or distance) 1 

around the Kapuni plant? Our hypothetical concentration sensors 300m and 600m from the 2 

source (Table 2) indicate that with a single one-year CO2ff observation, only a change in 3 

emissions of at least 36% would be detectable at 95% confidence, a much larger change than 4 

occurs in our observational dataset. The location of the pine tree (at 400m southeast of the 5 

plant) appears to provide as good a detection capability as any of our hypothetical sensors. 6 

However, if we have four years of observations (and the change in emissions was sustained 7 

over that time period) located either to the east or the south of the plant at a distance of 300m, 8 

we would be able to detect a change of 10% or more at the one-sigma confidence level. 9 

Changes of 20% or more would be detectable at these same locations with one year of 10 

observations, or alternately, four years of observations if we require high confidence. 11 

This analysis uses the actual meteorology only to determine the interannual variability in 12 

CO2ff that we might expect due to meteorological variations.  If we also know the 13 

meteorology in the year or years of the new observations, we can quantify the change in 14 

emissions by modelling transport at constant emissions. For example, attributing 15% of the 15 

one-year variation at the pine tree to the combined factors of transport and measurement 16 

uncertainty (Table 1) and assuming that the rest of the variation is due to emissions, this 17 

translates to a change in emissions of 27% over the one year. In this manner it is possible to 18 

get a more precise estimate of the long-term changes in emissions. 19 

Additionally, if we have multiple measurements over the same period at different locations 20 

around the point source, measurement uncertainty reduces proportionally by n1 , where n is 21 

the number of independent measurements. The resulting reduction in detection thresholds is 22 

more complex and depends on the long-term mean and variation at each of the observation 23 

locations. One could, for example, use a paired t-test to determine if the change detected in all 24 

of the measurements taken together is significant. This is beyond the scope of the current 25 

study, but the detection thresholds given in Tables 2 and 3, based on a single observation 26 

location, would overestimate the minimum change in emissions that it is possible to observe 27 

with multiple measurements designed to cover the area surrounding the point source.  28 

3.4 Applicability to other point sources 29 

The results presented here are specific to the meteorology and point sources at the Kapuni 30 

site, but the methodology can be extended to any point source with suitable trees growing 31 
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nearby. Ideally, observations would be made as close to the source as possible in the direction 1 

where the signal is strongest and/or most consistent. If measurement uncertainty of 1ppm is to 2 

be relatively unimportant compared to the combined transport and emissions variability of 8% 3 

at the pine tree (i.e. adding measurement uncertainty does not change the total variation in 4 

measured CO2ff by more than 1-2%), we require a signal around 20-30ppm, implying a 5 

required emission rate five times that of the Kapuni Vector plant. Alternatively, if we were 6 

able to reduce measurement uncertainty to 0.5ppm (for example, by increased measurement 7 

precision or taking measurements from multiple locations at the site), we would be able to 8 

detect changes with signals at around half the magnitude, and the method could be more 9 

feasible for emission sources the size of the Kapuni Vector Plant. Additionally, if we have 10 

multiple measurements from the same period at various locations surrounding the source, 11 

detection thresholds lower further and we can achieve the same sensitivity with a smaller 12 

point source.  13 

Our case study involves point sources that are fairly small on an international scale; for 14 

comparison, the world’s largest power plant, in Taiwan, emits about 300,000 gC s
-1

 or 9.5 15 

TgC yr
-1

 (Ummel, 2012), which is 95 times as much as the Vector plant at Kapuni.  There are 16 

approximately 800 power plants worldwide that emit more than 10 times the annual total 17 

CO2ff at Kapuni (CARMAv3.0, 2009; Wheeler and Ummel, 2008; Ummel, 2012). The 18 

typical emission rates seen at these larger power plants would produce signals in which 19 

measurement uncertainty is only a small proportion of the total. With annual signals 20 

theoretically 10 times that observed at the Kapuni pine tree and the same amount of 21 

meteorological variation, all other things being equal, the detection threshold for a one-year 22 

measurement at the location of the pine tree would be 19%, or 10% with four years of 23 

measurements. This is a plausible reduction target, and the method would be useful for 24 

verifying emissions changes in such cases. 25 

 26 

4 Conclusions 27 

We have examined sources of interannual variability in CO2ff in samples from tree ring 28 

archives representing integrated averages over one year. We used the atmospheric transport 29 

model WindTrax to separate variability in meteorology and transport from other sources of 30 

variation in our observations. At the location of the pine tree, modelled variation in transport 31 

is 7% of the six-year reference mean. This is about the same magnitude as the variation in 32 
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emissions that were recorded over the same time period. At the chestnut tree, variation due to 1 

atmospheric transport is larger, at 19% of the mean, and is about twice the magnitude of the 2 

variation in emissions. Taking into account typical measurement uncertainty of 1ppm for 3 

radiocarbon samples, in order to conclude with high confidence that there has been a change 4 

in emissions and not just natural variation in meteorology, we would require an observed 5 

change of 42% from the mean in a new one-year sample from the pine tree. If we take a two-6 

year or four-year sample average, this reduces to 30% and 22%, respectively. This is well 7 

above the largest single-year change in emissions at the Vector Plant, which is 14%. 8 

However, if we are able to reduce measurement uncertainty by half, to 0.5ppm, or if the point 9 

source doubles in strength, detection thresholds are closer to the actual level of variation in 10 

emissions. If we only require confidence at the one-sigma level, we would in this case be able 11 

to detect a 14% change in a single year. 12 

Detection limits are highly dependent on the location of the observations and specific 13 

meteorology of the site. Wind patterns should be carefully considered before deciding where 14 

to take samples in any study, preferably in an area where the signal will be strongest and 15 

where wind patterns will be most consistent through time. A model analysis such as we have 16 

performed can give an idea of the baseline variability in transport and the size of the signal 17 

needed to observe changes in emissions. This makes it theoretically possible to separate the 18 

uncertainty in transport from other sources of uncertainty.  19 

In general, this method will be most effective when observations are made in the dominant 20 

wind direction and/or in a direction with consistent winds, close enough to the point source so 21 

that natural variability in meteorological conditions and measurement uncertainty does not 22 

overwhelm the signal from the emissions. The larger the point source (the higher the emission 23 

rate) and the signal from CO2ff, the more able integrated averages from plant material will be 24 

to detect changes in emissions. For larger power plants or other point sources of a more 25 

typical size worldwide, detecting changes with this method could be feasible; with signals 10 26 

times or more the size of Kapuni, measurement uncertainty is relatively insignificant, and 27 

sustained changes in emissions on the order of 10% can be detected from a single sampling 28 

location given suitable meteorological conditions and observations. 29 
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Table 1. Observed and modelled CO2ff means and standard deviations. All means and 1 

standard deviations (SD) include six years (2008 and 2010 are omitted because there are no 2 

observations available for these years). Measurement uncertainty (MU) of 1.0ppm is 3 

explicitly added to the modelled results in the far right column. Observations implicitly 4 

include this uncertainty. 5 

Observation or 

simulation (2004-2011) 

Mean 

(ppm)  

SD (% of mean) SD + 1.0ppm MU 

(% of mean) 

Pine    

Observed  5.4   0.8 (14%) 

Modelled CO2fftree : 

variable meteorology, 

variable emissions 

6.1 0.5 (7.8%) 1.1 (18%) 

Modelled CO2ff :  

variable meteorology, 

constant emissions  

7.4 0.5 (6.6%) 1.1 (15%) 

Modelled CO2ff :  

constant meteorology, 

variable emissions 

7.3 0.5 (7.4%) 1.1 (15%) 

Chestnut    

Observed  2.1   1.1 (51%) 

Modelled CO2fftree : 

variable meteorology, 

variable emissions 

2.2 0.3 (15%) 1.0 (47%) 

Modelled CO2ff :  

variable meteorology, 

constant emissions  

2.7 0.5 (19%) 1.1 (41%) 

Modelled CO2ff :  

constant meteorology, 

variable emissions 

2.3 0.2 (7.6%) 1.0 (43%) 
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Table 2. Eight-year modelled mean CO2ff and standard deviation (SD) of eight hypothetical 1 

sensors for eight years of constant emissions simulation and detection limits at the two-sigma 2 

(95%) and one-sigma (68%) confidence level (CL) for samples representing an average of 3 

one, two, or four years. 4 

Model 

Sensor 

Mean 

(ppm) 

SD (% of 

mean)  

SD + 1ppm 

MU (% of 

mean)  

% change detectable 

(95% CL) 

% change detectable 

(68% CL) 

1 yr 2 yr 4 yr 1 yr 2 yr 4 yr 

North 

300m 
12.2 2.4 (20%) 2.6 (21%) 53% 38% 29% 24% 18% 13% 

North 

600m 
4.6 0.8 (18%) 1.3 (29%) 72% 52% 39% 33% 24% 18% 

East 

300m 
22.8 3.2 (14%) 3.3 (15%) 37% 27% 20% 17% 12% 9.4% 

East 

600m 
9.0 1.3 (14%) 1.6 (18%) 45% 33% 24% 20% 15% 12% 

South 

300m 
11.7 1.3 (11%) 1.7 (14%) 36% 26% 20% 16% 12% 9.2% 

South 

600m 
4.7 0.5 (10%) 1.1 (24%) 60% 43% 33% 27% 20% 15% 

West 

300m 
1.6 0.8 (50%) 1.3 (81%) 204% 148% 111% 92% 68% 52% 

West 

600m 
0.34 0.16 (50%) 1.0 (300%) 744% 540% 405% 337% 250% 190% 
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Table 3. Detection limits for samples at trees, calculated with modelled CO2ff at constant 1 

emissions and six years of observations in reference period. Limits are given at the two-sigma 2 

(95%) and one-sigma (68%) confidence level (CL) for samples representing an average of 3 

one, two, or four years. Measurement uncertainty (MU) of 1.0ppm or 0.5ppm is added in 4 

quadrature to the standard deviation of modelled CO2ff before limits are calculated. 5 

Modelled CO2ff: 

variable 

meteorology  

constant emissions 

% change detectable     

(95% CL) 

% change detectable          

(68% CL) 

1 yr 2 yr 4yr 1 yr 2 yr 4yr 

Pine       

Modelled CO2ff + 

1.0 MU 
42% 30% 22% 18% 13% 10% 

Modelled CO2ff + 

0.5 MU 
27% 19% 14% 11% 8.5% 6.5% 

Chestnut       

Modelled CO2ff + 

1.0 MU 
115% 83% 62% 92% 68% 52% 

Modelled CO2ff + 

0.5 MU 
89% 64% 48% 38% 28% 22% 
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Figure 1. Aerial view of Kapuni area, with the sampled pine and chestnut trees and Vector 3 

Gas Treatment Plant and Ballance Agri-Nutrient Urea Plant labelled. 4 
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Figure 2. Wind roses during the growing season at Hawera 2004-2011 (left) and Kapuni 2013 3 

(right), daylight hours only (8:00am – 6:00pm). 4 

5 
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Figure 3. Percentage of wind in each of four directions (left axis) and mean wind speed (right 3 

axis) by growing year between 2004 and 2011 (daylight hours only, 8:00am – 6:00pm). 4 

Directions are defined by +/- 30 degrees due north, west, south, and east (i.e. west is defined 5 

as wind from 240° to 300°). Note that this does not comprise the complete 360° circle so 6 

percentages do not add to 100. 7 

8 
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Figure 4. Pine tree (top) and chestnut tree (middle) modelled CO2fftree vs. tree ring observed 3 

CO2ff. Dashed lines show modelled and observed six-year means. Bottom panel shows the 4 

average emissions rate for Vector and Ballance in each year. 5 
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Figure 5. Constant emissions, variable meteorology simulation results for hypothetical 3 

sensors: CO2ff mole fraction averaged over all eight years of simulation (squares) and 4 

individual annual averages (circles). Sensors are labelled by direction (N, E, S or W) and 5 

distance (300m or 600m) from the source. 6 
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